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Anyonic variables are introduced. They are shown to give a representation of 
the quantum hyperplane. 

1. INTRODUCTION 

The idea of grading (Van Oystean and Nastassecu, 1982) is well known 
in algebra. There, a Zn grading of a ring R is a collection of subrings R i such 
that R = ~ Ri and RiRj C_ Ri+j. 

An analogous idea can be followed for variables. Commuting variables 
(real or complex) correspond to ZI grading, while anticommuting variables 
(Taylor and Ferrara, 1982) correspond to Z2 grading. Recently we have defined 
semionic variables (Ahmed et al., 1993), which correspond to Z4 grading. In 
this note we generalize our previous results to variables with Zn grading. 
These variables are called anyonic variables. These variables are introduced 
here and shown to form a representation of the quantum hyperplane. 

2. ANYONIC VARIABLES 

The variables 01, 02 . . . .  are said to be 1r/n anyonic variables if 

0k01 = exp[i -~S(k- l )]  0t0~ (2.1) 
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where 

1, k > l  

S (k  - l) = - 1 ,  k < l (2.2) 
O, k = l  

It is straightforward to see that 

S(k  - l) + S( l  - k) = 0 (2.3) 

Hence the definition (2.1) is consistent. Bosonic (commuting) variables corre- 
spond to taking the limit n ~ ~, while fermionic (anticommuting) variables 
correspond to n = 1. 

Differentiation and integration of  anyonic variables are defined as 
follows: 

O 1 OOk O(OD 2 
- 0, - 81, - (1 + e i ~ / " ) s ~ - t ) ) O ~  (2.4) 

00t 001 00t 

With these definitions, it follows that 

O(Ol) p _ 1 - e i~rp /n  

OOj 1 - e i~/" ~(0/)P-I (2.5) 

Notice that when p = 2n the right-hand-side of  this last equation identically 
vanishes. Hence we impose, for any "rdn anyonic variables, the following 
condition: 

(0j) 2" = 0 (2.6) 

For anticommuting variables, n = 1 and we regain the familiar result (0:) 2 
= 0 .  

Translation invariance and equation (2.6) suggest the following definition 
for integration over anyonic variables: 

f (0j) "-1 d01 = (2.7) 

and the integration of any other power of  0j is zero. For n = 1 the familiar 
Brezin integral (Taylor and Ferrara, 1982) is regained. 

3. THE QUANTUM HYPERPLANE 

The quantum hyperplane is defined in Manin (1989) and Faddeev et  al. 

(1988) as the set of coordinates xt, 1 = 1, 2 . . . .  , such that 

xlx j  = qx jx t ,  l < j (3.1) 
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The corresponding differential dxi satisfies 

dxidxj = _1 dxjdxi, i < j (3.2) 
q 

On the other hand, the noncommutative differential calculus advocated 
in Wess and Zumino (1990) and Zumino (1991) states that in general the 
coordinates xi obey the commutation relation 

kl 
rpj ~ XpXj  - -  n p j X k X  ! = 0 (3.3) 

for some tensor B~. These commutation relations lead to the consistency 
condition 

Omrij  ---= 0 (3.4) 

Furthermore, the differentials dx~ in general satisfy 

kl xp dxj = C pj dxk x~ (3.5) 

A straightforward comparison shows that for anyonic variables of type 
w/n we have 

Bkplj exp[ / ' r r s (p  j ) ]  k 1 = - - g~ ~p (3.6) 
n 

The consistency condition (3.4) is satisfied for anyonic variables due to the 
property (2.3). The tensor Cj.rf is given by 

CJPtl = ~ exp[ i'rr S(p - j) I n  (3.7) 

The R-matrix for the quantum group GLq(n) is (Manin, 1989; Faddeev 
et al., 1988; Wess and Zumino, 1990; Zumino, 1991) 

8kgz[1 + (q - 1)g ij] + q - 8Jgio(j - i) (3.8) 

where 

1, x > 0  
O(x) -- 0, x - -  0 (3.9) 
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The matrix R satisfies the Yang-Baxter relation 

R12R23R12 = R23RI2R23 (3.10) 

where the tensor product notation has been used. 
Thus we have shown that anyonic variables form a representation of 

the quantum hyperplane. An interesting correspondence between particles 
and variables is as follows: Commuting variables correspond to bosons. 
Anticommuting variables correspond to fermions. Anyonic variables corre- 
spond to particles with fractional states of the type known in the fractional 
Hall effect (Laughlin, 1988) and superconductivity (Fradkin, 1991). 
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